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Abstract--The influence of hydrodynamic dispersion on thermal convection in a vertical Hele-Shaw cell is 
studied theoretically. The supercritical, steady roll motion, the heat transport and the stability of the motion 
are investigated. The dispersion effects are found to be small, but qualitatively different from the 

corresponding effects in porous convection. 

9 ,  

d, 
Ah, 

V, 

V 2 , 

- G ,  

g, 
h, 
i, k, 
Nu, 

P, 
Ra, 

T ,  

AT, 

tj 

V~ 

x, y, z, 

Greek letters 
Cg, 

0, 
K, 

V, 

/t, 

NOMENCLATURE 

dimensionless dispersion tensor; 
channel width of Hele-Shaw cell; 
displacement thickness of boundary 
layer; 

i~x  + k~z ;  

V "V; 
pressure gradient; 
acceleration of gravity; 
height of Hele-Shaw cell; 
unit vectors in x- and z-direction; 
Nusselt number; 
dimensionless pressure; 
Rayleigh number 
d2yffhAT/12xv ; 

dimensionless temperature; 
temperature difference between lower 
and upper boundary; 
dimensionless time; 
velocity ui + wk; 
cartesian coordinates. 

dimensionless wave number; 
coefficient of volume expansion; 
dimensionless temperature; 
thermal diffusivity; 
kinematic viscosity; 
dynamic viscosity. 

the coarseness of the porous material and on the 
Rayleigh number. New approximations to 
experimental data were obtained. 

In the present paper the corresponding problem for 
a Hele-Shaw cell is studied. Here the lateral dispersion 
is zero and the motion is two-dimensional. These two 
restrictions lead to qualitatively new dispersion effects 
compared with porous convection. The present results 
extend the existing theory of convection in a 
Hele-Shaw cell [2-5]. 

F O R M U L A T I O N  O F  THE PROBLEM 

A Hele-Shaw cell is defined by two vertical walls of 
infinite horizontal extent with height h. The walls 
insulate for heat and are separated by a distance d. The 
space between the walls is occupied by a Newtonian 
fluid and bounded by two impermeable and perfectly 
heat-conducting planes at z = 0 and z = h. The x- and 
y-axes are directed along and normal to the walls, 
respectively. The walls are given by y = + d/2. The cell 
is unbounded in x-direction. 

Dimensionless quantities are introduced by taking 
h, r/h, AT ,  hd2/12xv, h2/K, as units of length, velocity, 
temperature, pressure and time, respectively. The 
governing equations may be written 

v + Vp - R a T k  = 0 (1) 

V 'v = 0 (2) 

aT 
- -  + v ' V T  = V - ( 9 " V T )  (3) 
at 

INTRODUCTION 

IN A RECENT paper Kvernvold and Tyvand [1] studied 
the effects of hydrodynamic dispersion on free 
convection in porous media. The steady two- 
dimensional motion, the heat transport and the 
stability of the motion were investigated. Interesting 
dispersion effects were found, strongly dependent on 

*Present address: Det norske Veritas, 1322 H#vik, 
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applying the Boussinesq and Hele--Shaw 
approximation [4, 5] and taking hydrodynamic 
dispersion [6] into account. Ra is the Hele-Shaw 
Rayleigh number 

d2ygATh 
Ra - - -  (4) 

12rv 

Wooding [2] calculated the dispersion in a 
Hele-Shaw cell with insulating walls, assuming a 
parabolic velocity distribution. His result can be put 
into the tensor form 
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1 d 2 
-- ii + kk  + ~ ~-T vv. (5) 

The dimensionless dispersion tensor (5) is valid for all 
P6clet numbers. 

The governing equations (1)-(3) and (5) are 
included in the corresponding equations for a porous 
medium [1] by putting et equal to d2/(210h2), ez equal 
to zero and the y-dependence left out. The method of 
solution is the same as reported by Kvernvold and 
Tyvand [1]. Also the same boundary conditions are 
taken 

w = 0 = 0  at z = 0 , 1  (6) 

which means impermeable, perfectly conducting 
boundaries. Here 0 is defined by 

T = (T)== o - z + 0. (7) 

RESULTS 

Dispersion does not influence the onset of 
convection, neither by linear theory nor energy theory 
[7]. The critical Rayleigh number is 

Ra, = 47~ 2 (8) 

with a corresponding wave number ~t, = n 2. 
The supercritical heat transport is given by the 

Nusselt number defined by 

N u = - k ' ( ~ ' V T ) , = o =  1 -  ~z =o 

where the overbar denotes horizontal average. Here 
one basic difference from porous convection [1] is 
obvious. Because the lateral dispersion is zero, there 
are no terms with explicit dispersion dependence in the 
definition of the Nusselt number. In porous convection 
such terms are responsible for a rapid growth of the 
Nusselt number with the Rayleigh number. 

The results for the Nusselt number are given in 
Tables 1 and 2 and Fig. 1. For given ~ and Ra, Nu is 
approximately a linear function of d2/h 2. All the 
present calculations show that dispersion reduces the 
heat transport in a Hele-Shaw cell. Table 2 and Fig. 1 
show Nu as a function of Ra/Rac for the wave number 
which gives maximum heat transport. This wave 
number is reduced by dispersion. A similar but much 
stronger reduction is present in porous convection [1]. 

In Fig. 1 the dispersion effect on the heat transport is 
compared with the porous medium case. The shaded 
area contains results for the Nusselt number in an 
isotropic porous medium with dispersion factor D < 
1/60 [1]. In a Hele-Shaw cell Nu is smoothly reduced 
due to dispersion. For porous media, however, 
dispersion causes an increase in the heat transport 
which is strongly dependent on Ra, except in the range 
Ra/Rac < 1.65 where a small reduction is present. 

The stability of the steady motion with respect to 
small disturbances has been investigated. In the 
Hele-Shaw approximation only Eckhaus disturbances 
(parallel-rolls) are possible. The results are shown in 
Fig. 2. The relatively large value d2/h 2 = 1/10 is chosen 
for the purpose of illustration. It is possibly outside the 
range of validity for the Hele-Shaw approximation. 

Table 1. Nusselt number at wave number ~t = n 

d2/h 2 

Ra/Ra, 0 1/50 1/20 1/10 

2 2.251 2.247 2.240 2.230 
3 2.927 2.920 2.909 2.891 
4 3.405 3.396 3.381 3.358 
6 4.070 4.060 4.045 4.017 

Table 2. Maximum Nusselt number and corresponding wave number 

d2/h 2 = 0 dZ/h 2 = 1/10 

Ra/Ra c Nu ~t/n Nu ct/n 

2 2.262 1.09 2.240 1.09 
4 3.527 1.49 3.463 1.44 
6 4.443 2.13 4.292 1.99 
8 5.242 2.59 4.971 2.42 

10 5.910 2.93 5.517 2.71 

12 6.458 3.22 5.954 2.95 
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FIG. 1. NuvsRa/Ra~f~rs~meva~ues~fd2/h2.Shadedareac~rresp~ndst~free~nvecti~nwithdispersi~nin 
a porous medium, taken from Kvernvold and Tyvand [1]. We consider dispersion factor/) not larger than 

1/60, a case which is shown by the broken curve. 

In Fig. 2 the case d2/h z = 0 is also included [5]. The 
lower left-hand branch is corrected according to 
present calculations, being more accurate: up to 
Ra/Ra~ = 3.8 the most unstable disturbances are 
found to have exponential time dependence. Only in 
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Flo. 2. Stability domains for steady roll motion in the ~t/~c, 
Ra/Ra c plane: - -  exponential Eckhaus instability, - - -  
oscillatory Eckhaus instability. Experimental data by Koster 
and Miiller [8] : Stable points in the ct/~tc, Ra/Ra, plane. �9 

non-oscillatory; + oscillatory. 

the range 3.8 < Ra/Ra, < 7.8 an oscillatory mode is 
present. 

The stability domain in the ct, Ra plane shows no  
tendency to close in our  range of computation. At the 
right-hand branch dispersion reduces the upper limit 
of stable wave numbers. This reduction is remarkably 
constant  for all Ra/Rac > 2. At the left hand branch 
dispersion is negligible for Ra/Rac < 3.8 where the 
most unstable mode of disturbance is exponential. 
When 3.8 < Ra/Ra c < 9.7, the lower limit of stable 
wave number  is reduced due to dispersion, whereas it is 
increased for larger Rayleigh numbers. When d2/h 2 = 
1/10 the most unstable mode of disturbance is 
oscillatory in the range 3.8 < Ra/Rac < 8.3. 

Figure 2 also includes some experimental data 
obtained by Koster and Mfiller [8]. The experiments 
were made in a Hele-Shaw cell with d/h = 1/41. Then 
the effects of dispersion are negligible. The experiments 
confirm the right hand branch of the stability curve. 
Oscillatory behaviour is found at the left hand branch. 
However, it is not  located where the theory predicts. 
Some of the results at the left-hand branch are in the 
theoretically unstable region. These discrepancies are 
believed to be due to a strong heat conduction in the 
walls. Koster and Miiller [8] mention new 
experiments for nearly insulating walls which tend to 
confirm the present theoretical results. 

CONCLUSIONS 
The effects of hydrodynamic dispersion on free 

convection in a vertical Hele-Shaw cell have been 
studied. The heat transport is reduced due to 
dispersion. The stability domain in the ~t, Ra plane is 
slightly influenced by dispersion. The dispersion effects 
are small, but  qualitatively different from the 
corresponding effects on convection in isotropic 
porous media [1]. 
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The present dispersion effects will only be 
significant when d/h is comparable with unity. We will 
mention some effects which may then be more 
important than dispersion: 

(1) Three-dimensional  flow effects, leading to 
depar ture  f rom the He le -Shaw approximat ion .  

(2) In an  exper iment  there will be no  slip at  the upper  
and  lower boundaries .  This  will be i m p o r t a n t  within a 
distance of order  d f rom the boundaries ,  bu t  is no t  
accounted  for in the usual He le -Shaw approximat ion .  
See the Appendix.  

Fu tu re  theories on  He le -Shaw cells should take 
these effects in to  account  ra ther  than  dispersion. 
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APPENDIX 

ON THE INFLUENCE OF NO-SLIP CONDITION 
AT THE UPPER AND LOWER BOUNDARY 

The Hele-Shaw approximation reduces the order of the 
equation of motion (1), so that restrictions on the tangential 
velocity at the boundaries must be abandoned. However, by 
introducing boundary layers in the model, it is possible to 
incorporate rigid boundaries. To study the effect of the 
boundary layers one must go back to the Navier-Stokes 
equation of motion. Due to the symmetry in the problem, it is 
sufficient to study the lower boundary layer. 

In free convection, the vertical buoyancy creates pressure 
gradients which can in turn drive the flow horizontally. If d/h 
is not too large, the flow is largely horizontal in the boundary 
layers. As a first approximation, this horizontal flow is 
governed by a balance between the local pressure gradient 
- G  and viscous forces. The velocity distribution in the 
boundary layer is then given by the following boundary value 
problem (in dimensional quantities) 

r ~2U G 
- ( A 1 )  ~y~ + ~z~ - 

y =  +d/2~ (A2) U ~ 0  at 

u = 0  at z = 0 .  

It has the exact analytical solution 

,=o (2n + 1) 3 

(2n+ 1)~ (2n+ 1)re ] 
x cos d yexp d z . (A3) 

J 

From this velocity distribution one easily calculates the 
displacement thickness of the boundary layer 

_ 9 3  oo - 5  ~ 

Ah - ~gd , ~  n ~ 0.3151d. (A4) 

These results may form the basis for future approximations of 
the no-slip effects. Generally, rigid boundaries are more 
important than dispersion. Both effects increase with the ratio 
d/h. 

EFFETS DE LA DISPERSION SUR LA CONVECTION THERMIQUE DANS UNE CELLULE 
HELE-SHAW 

R&ume--L'influence de la dispersion hydrodynamique sur la convection thermique dans une cellule 
Hele-Shaw verticale est 6tudire throriquement. On s'int&esse au mouvement permanent et supercritique des 
rouleaux, au transport thermique et fi la stabilit6 du mouvement. Les effets de la dispersion sont trouves 
faibles mais quantitativement diffrrents des effets correspondants dans le cas de la convection en milieu 

poreux. 

DISPERSIONSEINFL1]SSE AUF THERMISCHE KONVEKTION IN EINER 
HELE-SHAW-ZELLE 

Zusammenfassung--Es wird der EinfluB der hydrodynamischen Dispersion auf die thermische 
Konvektion in einer senkrechten Hele-Shaw-Zelle theoretisch untersucht. Es werden die iiberkritische 
station/ire Drehbewegung, der W/irmeiibergang und die Stabilit/it der Bewegung behandelt. Dabei wird 
festgestellt, dab die Dispersionseffekte goring sind, sich abet qualitativ yon entsprechenden Effekten bei 

Konvektion in porrsen Medien unterscheiden. 

BJIH~IHHE ~HCrIEPCHH HA TErlIIOBYIO KOHBEKUHIO B ~IqEflKE XEJIE-IIIOY 

ABHOTalUlg - -  TeOI~THqeCKH HCC-~e~yeTcsI BYlH~IHHe FH,!IpO.~HHaMHqeCKO~ ~HCIIepCHH Ha TenYloBylO KOH- 
BeKRHIO B BepTHKaJIbHO~ ~lqefiKe Xeae-IIIoy. PaCCMaTpHBalOTC~ 3aKpHTHqecKoe yCTaHOBHBmeecfl 
Ba.rloorpa3noe ,RBH~eHHe, a TaK~e nepgnoc Ten~a H yCTO~qHBOCTb ~IBHXeHHfl. YCTaHOB.qeHO, qTO 
30pOperTbI aHcnepcHH He3naqHTem, HbI, OllHaro OHH raqecTnenHo OTaHqarOTCa OT COOTBeTCTByromnx 

3qbOpeKToa, Ha6a~ollaeMblX npH KOHBerUHH n nopax. 


