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Abstract—The influence of hydrodynamic dispersion on thermal convection in a vertical Hele-Shaw cell is

studied theoretically. The supercritical, steady roll motion, the heat transport and the stability of the motion

are investigated. The dispersion effects are found to be small, but qualitatively different from the
corresponding effects in porous convection.

NOMENCLATURE
9, dimensionless dispersion tensor;
d, channel width of Hele-Shaw cell;
Ah, displacement thickness of boundary
layer;
.0 0
v Tox +k dz’
\%A vV-v;
-G, pressure gradient;
g, acceleration of gravity;
h, height of Hele-Shaw cell;
i k, unit vectors in x- and z-direction;
Nuy, Nusselt number;
D dimensionless pressure;
Ra, Rayleigh number
d*yghAT/12kv;
T, dimensionless temperature;
AT, temperature difference between lower
and upper boundary;
t, dimensionless time;
v, velocity ui + wk;
X, ¥, z, cartesian coordinates.

Greek letters

a, dimensionless wave number;

7, coefficient of volume expansion;

0, dimensionless temperature;

K, thermal diffusivity ;

v, kinematic viscosity ;

U, dynamic viscosity.
INTRODUCTION

IN A RECENT paper Kvernvold and Tyvand [1] studied
the effects of hydrodynamic dispersion on free
convection in porous media. The steady two-
dimensional motion, the heat transport and the
stability of the motion were investigated. Interesting
dispersion effects were found, strongly dependent on

* Present address: Det norske Veritas, 1322 Hgvik,
Norway.

the coarseness of the porous material and on the
Rayleigh number. New approximations to
experimental data were obtained.

In the present paper the corresponding problem for
a Hele-Shaw cell is studied. Here the lateral dispersion
is zero and the motion is two-dimensional. These two
restrictions lead to qualitatively new dispersion effects
compared with porous convection. The present results
extend the existing theory of convection in a
Hele-Shaw cell [2-5].

FORMULATION OF THE PROBLEM

A Hele-Shaw cell is defined by two vertical walls of
infinite horizontal extent with height k. The walls
insulate for heat and are separated by a distance d. The
space between the walls is occupied by a Newtonian
fluid and bounded by two impermeable and perfectly
heat-conducting planes at z = 0 and z = h. The x- and
y-axes are directed along and normal to the walls,
respectively. The walls are given by y = +d/2. The cell
is unbounded in x-direction.

Dimensionless quantities are introduced by taking
h, k/h, AT, hd*/12xv, h? /x, as units of length, velocity,
temperature, pressure and time, respectively. The
governing equations may be written

v+ Vp — RaTk =0 1)
V-v=0 2)
oT
E+v-VT=V-(@'VT) 3)
applying the Boussinesq and Hele-Shaw

approximation [4, 5] and taking hydrodynamic
dispersion [6] into account. Ra is the Hele—Shaw
Rayleigh number
d®ygATh

Ra=—— 4

a 12xv “

Wooding [2] calculated the dispersion in a

Hele-Shaw cell with insulating walls, assuming a

parabolic velocity distribution. His result can be put
into the tensor form
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The dimensionless dispersion tensor (5) is valid for all
Péclet numbers.

The governing equations (1)-(3) and (5) are
included in the corresponding equations for a porous
medium [ 1] by putting ¢, equal to d?/(210h?), ¢, equal
to zero and the y-dependence left out. The method of
solution is the same as reported by Kvernvold and
Tyvand [1]. Also the same boundary conditions are
taken

w=0=0 at z=0,1 6)

which means impermeable, perfectly conducting
boundaries. Here 0 is defined by

T=(T)—o —z+8. )]

RESULTS

Dispersion does not influence the onset of
convection, neither by linear theory nor energy theory
[7]). The critical Rayleigh number is

Ra, = 4n? ®)

with a corresponding wave number a, = =2
The supercritical heat transport is given by the
Nusselt number defined by

00

Nu= -k‘(@.vr),=o=1—<—) ©)
az z=0
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where the overbar denotes horizontal average. Here
one basic difference from porous convection [1] is
obvious. Because the lateral dispersion is zero, there
are no terms with explicit dispersion dependence in the
definition of the Nusselt number. In porous convection
such terms are responsible for a rapid growth of the
Nusselt number with the Rayleigh number.

The results for the Nusselt number are given in
Tables 1 and 2 and Fig. 1. For given o and Ra, Nu is
approximately a linear function of d?/h*. All the
present calculations show that dispersion reduces the
heat transport in a Hele—-Shaw cell. Table 2 and Fig. 1
show Nu as a function of Ra/Ra, for the wave number
which gives maximum heat transport. This wave
number is reduced by dispersion. A similar but much
stronger reduction is present in porous convection [1].

In Fig. 1 the dispersion effect on the heat transport is
compared with the porous medium case. The shaded
area contains results for the Nusselt number in an
isotropic porous medium with dispersion factor D <
1/60 [1]. In a Hele-Shaw cell Nu is smoothly reduced
due to dispersion. For porous media, however,
dispersion causes an increase in the heat transport
which is strongly dependent on Ra, except in the range
Ra/Ra, < 1.65 where a small reduction is present.

The stability of the steady motion with respect to
small disturbances has been investigated. In the
Hele-Shaw approximation only Eckhaus disturbances
(parallel-rolls) are possible. The results are shown in
Fig. 2. The relatively large value d*/h*> = 1/10.s chosen
for the purpose of illustration. It is possibly outside the
range of validity for the Hele-Shaw approximation.

Table 1. Nusselt number at wave number @ = =

d2 /hz

Ra/Ra, 0 1/50 1/20 1/10
2 2.251 2.247 2.240 2230

3 2927 2920 2909 2.891

4 3.405 3.396 3.381 3.358

6 4.070 4.060 4.045 4017

Table 2. Maximum Nusselt number and corresponding wave number
at/? =0 d*/n* = 1/10

Ra/Ra, Nu o/n Nu o/n
2 2.262 1.09 2.240 1.09

4 3.527 1.49 3.463 1.44

6 4443 2.13 4292 1.99

8 5.242 2.59 4971 242

10 5910 293 5.517 271
12 6.458 322 5954 295
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FiG. 1. Nuvs Ra/Rac for some values of d2/h*. Shaded area corresponds to free convection with dispersion in
a porous medium, taken from Kvernvold and Tyvand [1]. We consider dispersion factor D not larger than
1/60, a case which is shown by the broken curve.

In Fig. 2 the case d*/h* = Qs also included [5]. The
lower left-hand branch is corrected according to
present calculations, being more accurate: up to
Ra/Ra, = 3.8 the most unstable disturbances are
found to have exponential time dependence. Ouly in
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FIG. 2. Stability domains for steady roll motion in the a/a,,
Ra/Ra, plane: exponential Eckhaus instability, ———
oscillatory Eckhaus instability. Experimental data by Koster
and Miiller [8]: Stable points in the o/x,, Ra/Ra, plane. O
non-oscillatory; + oscillatory.

the range 3.8 < Ra/Ra, < 7.8 an oscillatory mode is
present.

The stability domain in the «, Ra plane shows no
tendency to close in our range of computation. At the
right-hand branch dispersion reduces the upper limit
of stable wave numbers. This reduction is remarkably
constant for all Ra/Ra, > 2. At the left hand branch
dispersion is negligible for Ra/Ra, < 3.8 where the
most unstable mode of disturbance is exponential.
When 3.8 < Ra/Ra, < 9.7, the lower limit of stable
wave number is reduced due to dispersion, whereas itis
increased for larger Rayleigh numbers. When d*/h* =
1/10 the most unstable mode of disturbance is
oscillatory in the range 3.8 < Ra/Ra, < 8.3.

Figure 2 also includes some experimental data
obtained by Koster and Miiller [8]. The experiments
were made in a Hele-Shaw cell with d/h = 1/41. Then
the effects of dispersion are negligible. The experiments
confirm the right hand branch of the stability curve.
Oscillatory bebaviour is found at the left hand branch.
However, it is not located where the theory predicts.
Some of the results at the left-hand branch are in the
theoretically unstable region. These discrepancies are
believed to be due to a strong heat conduction in the
walls. Koster and Miiller [8] mention new
experiments for nearly insulating walls which tend to
confirm the present theoretical results.

CONCLUSIONS

The effects of hydrodynamic dispersion on free
convection in a vertical Hele-Shaw cell have been
studied. The heat transport is reduced due to
dispersion. The stability domain in the «, Ra plane is
slightly influenced by dispersion. The dispersion effects
are small, but qualitatively different from the
corresponding effects on convection in isotropic
porous media [1].
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The present dispersion effects will only be
significant when d/h is comparable with unity. We will
mention some effects which may then be more
important than dispersion:

(1) Three-dimensional flow effects, leading to
departure from the Hele-Shaw approximation.

(2)In an experiment there will be no slip at the upper
and lower boundaries. This will be important within a
distance of order d from the boundaries, but is not
accounted for in the usual Hele-Shaw approximation.
See the Appendix.

Future theories on Hele-Shaw cells should take
these effects into account rather than dispersion.
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APPENDIX

ON THE INFLUENCE OF NO-SLIP CONDITION
AT THE UPPER AND LOWER BOUNDARY

The Hele-Shaw approximation reduces the order of the
equation of motion (1), so that restrictions on the tangential
velocity at the boundaries must be abandoned. However, by
introducing boundary layers in the model, it is possible to
incorporate rigid boundaries. To study the effect of the
boundary layers one must go back to the Navier-Stokes
equation of motion. Due to the symmetry in the problem, it is
sufficient to study the lower boundary layer.

In free convection, the vertical buoyancy creates pressure
gradients which can in turn drive the flow horizontally. If d/h
is not too large, the flow is largely horizontal in the boundary
layers. As a first approximation, this horizontal flow is
governed by a balance between the local pressure gradient
—G and viscous forces. The velocity distribution in the
boundary layer is then given by the following boundary value
problem (in dimensional quantities)

82 & G
gu,ov_ % (A1)
oy 0z u
u=0 at y= +d/2 (A2)
u=0 at z=0.

It has the exact analytical solution

G[1/d 2= (=1
u=—i-|— =y )45 3
ul2\4 8,5 @n+1)

2n+ ) 2n+)m

cosuyexp - (———2—2 . (A3)
d d

From this velocity distribution one easily calculates the

displacement thickness of the boundary layer

93 2
Ah=—=d } n7° = 03151d. (Ad)
n n=1
These results may form the basis for future approximations of
the no-slip effects. Generally, rigid boundaries are more

important than dispersion. Both effects increase with the ratio
da/h.

EFFETS DE LA DISPERSION SUR LA CONVECTION THERMIQUE DANS UNE CELLULE
HELE-SHAW

Résumé—L’influence de la dispersion hydrodynamique sur la convection thermique dans une cellule

Hele—Shaw verticale est étudiée théoriquement. On s’intéresse au mouvement permanent et supercritique des

rouleaux, au transport thermique et a la stabilité du mouvement. Les effets de la dispersion sont trouvés

faibles mais quantitativement différents des effets correspondants dans le cas de la convection en milieu
poreux.

DISPERSIONSEINFLUSSE AUF THERMISCHE KONVEKTION IN EINER
HELE-SHAW-ZELLE

Zusammenfassung—FEs wird der EinfluB der hydrodynamischen Dispersion auf die thermische

Konvektion in einer senkrechten Hele—Shaw—Zelle theoretisch untersucht. Es werden die iiberkritische

stationdre Drehbewegung, der Wirmeiibergang und die Stabilitit der Bewegung behandelt. Dabei wird

festgestellt, da3 die Dispersionseffekte gering sind, sich aber qualitativ von entsprechenden Effekten bei
Konvektion in pordsen Medien unterscheiden.

BJIMSAHUE JUCNEPCHUU HA TEIJIOBYIO KOHBEKLMUIO B SYEWUKE XEJIE-IIOY

Antorauus — TeopeTHyecKi HCCIENYETCS BIHSHHE THAPOAMHAMHYECKOM JUCIEPCHH HA TEMJIOBYIO KOH-

BEKUMIO B BepTHKanbHOH sueiike Xene-Illoy. PaccmaTpHBaloTCs 3aKPHTHYECKOE YCTaHOBHBILIEECA

Ba1000pa3HOE [BIXKCHHE, 2 TAKKE MEPeHOC Tela M YCTOHYMBOCTH ABHXEHHS. YCTAHOBJEHO, HYTO

>QdexThl NUCNEPCHH HE3HAYMTENbHBI, OJHAKO OHM KAYECTBEHHO OTJIMYAIOTCA OT COOTBETCTBYIOLIMX
3hhexTOB, HabMIONAEMBIX P KOHBEKUMH B NOPAX.



